In this work and the supporting Parts II [2] and III [3], we provide a ratherdetailed analysis of the stability and performance of asynchronous strategiesfor solving distributed optimization and adaptation problems over networks. Weexamine asynchronous networks that are subject to fairly general sources ofuncertainties, such as changing topologies, random link failures, random dataarrival times, and agents turning on and off randomly. Under this model, agentsin the network may stop updating their solutions or may stop sending orreceiving information in a random manner and without coordination with otheragents. We establish in Part I conditions on the first and second-order momentsof the relevant parameter distributions to ensure mean-square stable behavior.We derive in Part II expressions that reveal how the various parameters of theasynchronous behavior influence network performance. We compare in Part III theperformance of asynchronous networks to the performance of both centralizedsolutions and synchronous networks. One notable conclusion is that themean-square-error performance of asynchronous networks shows a degradation onlyof the order of $O(\nu)$, where $\nu$ is a small step-size parameter, while theconvergence rate remains largely unaltered. The results provide a solidjustification for the remarkable resilience of cooperative networks in the faceof random failures at multiple levels: agents, links, data arrivals, andtopology.
展开▼
机译:在这项工作以及第二部分[2]和第三部分[3]中,我们对异步策略的稳定性和性能进行了详细的分析,以解决网络上的分布式优化和自适应问题。我们检查异步网络,这些异步网络会受到相当普遍的不确定性来源的影响,例如不断变化的拓扑,随机链接故障,随机数据到达时间以及代理随机打开和关闭。在此模型下,网络中的代理可以停止更新其解决方案,也可以停止以随机方式发送或接收信息,而无需与其他代理进行协调。我们在第一部分中建立了有关参数分布的一阶和二阶矩的条件,以确保均方稳定行为。在第二部分中,我们得出了表示异步行为的各种参数如何影响网络性能的表达式。在第三部分中,我们将异步网络的性能与集中式解决方案和同步网络的性能进行了比较。一个值得注意的结论是,异步网络的主题方差性能仅显示了大约$ O(\ nu)$的降级,其中$ \ nu $是一个小的步长参数,而收敛速度在很大程度上保持不变。这些结果为合作网络在多种级别的随机故障面前的出色弹性提供了可靠的证明:代理,链接,数据到达和拓扑。
展开▼